
Estimates of Gradients in Radar Moments Using a Linear Least Squares
Derivative Technique

MATTHEW C. MAHALIK, BRANDON R. SMITH, KIMBERLY L. ELMORE, DARREL M. KINGFIELD,a

KIEL L. ORTEGA, AND TRAVIS M. SMITH

Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR National Severe Storms

Laboratory, Norman, Oklahoma

(Manuscript received 6 June 2018, in final form 27 January 2019)

ABSTRACT

The local, linear, least squares derivative (LLSD) approach to radar analysis is a method of quantifying

gradients in radar data by fitting a least squares plane to a neighborhood of range bins and finding its slope.

When applied to radial velocity fields, for example, LLSD yields part of the azimuthal (rotational) and radial

(divergent) components of horizontal shear, which, under certain geometric assumptions, estimate one-half of

the two-dimensional vertical vorticity and horizontal divergence equations, respectively. Recent advances in

computational capacity as well as increased usage of LLSD products by the meteorological community have

motivated an overhaul of the LLSD methodology’s application to radar data. This paper documents the

mathematical foundation of the updated LLSD approach, including a complete derivation of its equation set,

discussion of its limitations, and considerations for other types of implementation. In addition, updated az-

imuthal shear calculations are validated against theoretical vorticity using simulated circulations. Applica-

tions to nontraditional radar data and new applications to nonvelocity radar data including reflectivity at

horizontal polarization, spectrum width, and polarimetric moments are also explored. These LLSD gradient

calculations may be leveraged to identify and interrogate a wide variety of severe weather phenomena, either

directly by operational forecasters or indirectly as part of future automated algorithms.

1. Introduction

Weather radars are crucial to identifying and un-

derstanding weather phenomena. Signatures of pre-

cipitation type and rate, airmass boundaries, and storm

rotation are often identifiable by the size, shape, and

location of gradients within specific radar fields. In

reflectivity at horizontal polarization ZH alone, the

hook echo of a supercell (Fujita 1973; Markowski

2002), a bow-shaped ZH maximum common to dam-

aging wind events (Przybylinski 1995), and the mani-

festation of tornadic debris in the form of a ‘‘debris

ball’’ (Burgess et al. 2002) can all be thought of as

gradients. Likewise, gradient patterns such as differ-

ential reflectivity ZDR arcs (Kumjian and Ryzhkov

2008) and tornado debris signatures (TDS; Ryzhkov

et al. 2005) within polarimetric data fields such as ZDR

and cross-correlation coefficient rhv aid in the de-

tection and tracking of tornadoes and diagnostics of

updraft characteristics.

Radial velocity Vr gradients have been the subject of

perhaps the most study with respect to severe storms.

Among a wide range of applications, Vr gradients are

used to help identify convergence along boundaries,

which may be either the result of or catalyst for con-

vection (Carbone et al. 1990; Wilson et al. 1992),

midlevel convergence within a thunderstorm that can

signal the onset of damaging winds (Schmocker et al.

1996), divergent flows from downdrafts impinging on

the surface or storm exhaust at the cloud top (Roberts

and Wilson 1989; Smith et al. 2004), and rotation as-

sociated with mesocyclones (Donaldson 1970) and

tornadoes (Donaldson 1978; Brown et al. 1978). More

recently, relationships between the magnitudes of Vr

gradients in rotation signatures (measured as velocity

difference, rotational velocity, etc.) and tornado oc-

currence, intensity, and damage probability, have been
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derived (Alexander and Wurman 2008; Smith et al.

2015; Thompson et al. 2017).

Typically, the relative magnitude of rotation in severe

local storms is quantified as the magnitude of the differ-

ence between the local maxima in inbound and outbound

Vr. This ‘‘peak-to-peak’’ technique yields a quantity often

referred to as ‘‘delta velocity,’’ which may be normalized

by the distance between the Vr extrema (Mitchell et al.

1998; Stumpf et al. 1998). This one-dimensional approach

is effective in estimating the relative, local rate of rota-

tion, but it excludes surrounding data points, which may

include valuable information about the rotating feature

beyond simply the maximum rotation rate at its core.

Other limiting assumptions of the peak-to-peak approach

include the following: 1) the center of the circulation lies

exactly between the extrema, which may not be possible

to determine with coarse beamwidths and physical radar

sampling limitations (Burgess et al. 1993; Wood and

Brown 1997); 2) the extrema themselves are accurate

measurements, which is not always true due to noisy or

poorly dealiased data (Zittel et al. 2001); and 3) peak-to-

peak delta velocity will usually be biased low unless the

tornado is very wide, due to azimuthal smearing and av-

eraging of the radar beam over a relatively narrow wind

max (Wood and Brown 2011).

In response to the need for an alternative approach to

quantifying Vr gradients in a mathematically robust but

sufficiently straightforward way for real-time computa-

tion and operational use, Elmore et al. (1994) and Smith

and Elmore (2004, hereafter SE04) introduced the lin-

ear, least squares derivative (LLSD) approach to radar

data analysis. LLSD is a statistical data analysis ap-

proach that quantifies the gradient of a scalar field as a

two-dimensional, least squares plane that is fit to a local

neighborhood (or ‘‘kernel’’) of Vr data or other radar

measurements. The slope of this best-fit plane is the

local gradient at the center of the kernel. This approach

includes local information about the entire feature by

using surrounding data and effectively smoothing ex-

treme values to minimize the effect of outliers caused by

poor data quality. The total gradient is decomposed into

azimuthal and radial components, which are calculated

simultaneously for any given radar scan. When applied

to Vr fields, the across-azimuth gradient represents the

rotational shear component, referred to as ‘‘AzShear’’

(azimuthal shear;Miller et al. 2013). The complementary,

along-azimuth Vr gradient yields the divergent shear

component, or ‘‘DivShear.’’ TypicalAzShear andDivShear

fields for a tornadic supercell are shown in Fig. 1.

Although Vr is a vector directed along the radial,

treating it as a local scalar provides numerous advan-

tages. For example, scalar LLSD gradients can be easily

gridded for research or operational use. At the time of

this writing, gridded AzShear is an operational product

within the Multi-Radar Multi-Sensor (MRMS) system

(Smith et al. 2016). In recent years, the application of

AzShear in a wide range of operational and research

initiatives (Heinselman et al. 2008, 2012; Stumpf et al.

2012; Davis and Parker 2014; Snyder and Ryzhkov 2015;

Skinner et al. 2016; Dawson et al. 2017; Stough et al. 2017,

among others), coupled with an increase in computational

capacity, has motivated attempts to improve the accuracy

of LLSD-derived products. For example, Miller et al.

(2013) andNewman et al. (2013) described postprocessing

methods to overcome general limitations of the LLSD

technique by improving the ability of AzShear to identify

rotation at the storm and tornado scales through the use of

multiple hypothesis tracking (a technique used to isolate

continuous tracks of rotating objects) and empirically

derived, range-based shear corrections, respectively.

Unlike postprocessing approaches, the work pre-

sented here focuses directly on the underlying LLSD

equations and specific improvements upon the original

SE04 methodology and provides a technique general-

ized for calculating LLSD gradients of any data field.

The LLSD equations were rederived without regard to

the simplifying assumptions discussed in SE04, which

were at the time necessitated by computational limita-

tions. Updated LLSD outputs of AzShear were then

validated using a suite of simulated Rankine vortices

with known rotation attributes (size, strength, and range

from radar). In addition, the LLSD equations were ap-

plied to a variety of radar fields to investigate the

method’s utility in a range of meteorological phenom-

ena, producing gradient fields beyond only AzShear for

both Vr and non-Vr radar variables.

The effectiveness of direct use of LLSD gradients by

forecasters is dependent on the application. For exam-

ple, while time-accumulated AzShear (often referred to

as ‘‘rotation tracks’’; Miller et al. 2013) has been dem-

onstrated as a valuable tool for relaying tornado in-

formation to end users (Kuster et al. 2017), gradient

fields of rhv may be less intuitive. In essence, all LLSD

gradients are quantitative representations of signatures

that human forecasters are trained to visually identify but

that can sometimes be difficult to quantify. As a result,

many of the examples presented here show more prom-

ise as an intermediate product toward future feature-

identification or interrogation algorithm development.

In this paper, the mathematical derivation of the

complete set of LLSD equations is shown in section 2.

Section 3 discusses the mathematic and geometric con-

siderations of the LLSD kernel, and section 4 provides

examples of LLSD applications to various radar data.

The LLSD fields shown throughout were produced

using the National Severe Storms Laboratory (NSSL)
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Warning Decision Support System-Integrated Informa-

tion (WDSS-II; Lakshmanan et al. 2007b) software suite.

Many of the LLSD gradient fields are thresholded by

quality-controlled (QC)ZH (Lakshmanan et al. 2007a) to

focus solely on storm processes.

2. Derivation

Before LLSD gradients are calculated for any input

field, the data are passed through amedian filter (Huang

et al. 1979) to reduce noise, fill in potential missing data,

and filter outliers. Any inputVr data should be dealiased

beforehand. The filter used by NSSL LLSD algorithms

measures three azimuths across by three range gates

deep and assigns the median value of those nine data

points to the center gate of the neighborhood if at least

five of the eight surrounding gates contain valid data.

Measurements within the 3 3 3 neighborhood are as-

sumed to occur at regular radius and azimuth intervals.

This filter is applied to each individual data point within

the field. Any gates with missing or range-folded data

remaining in its kernel are discarded. The resulting fil-

tered data are then passed to the LLSD equations.

The original LLSD equations introduced by Elmore

et al. (1994) and expanded by SE04 were simplified at

the time for computational efficiency. In particular, it

was assumed that the data within the LLSD kernel are

locally Cartesian and symmetric about the kernel center.

As such, these calculations implemented a locally con-

stant azimuthal spacing between data points. This as-

sumption becomes especially problematic in two

situations. First, near the radar, the inclusion of addi-

tional, azimuthally narrow gates may cause the LLSD

kernel to wrap around the radar such that the straight-

line distance across the kernel may be smaller than the

polar-coordinate distance within the kernel. As a result,

the gradient would be calculated across a smaller dis-

tance, producing artificially high shears surrounding the

FIG. 1. Single-radar (a) 0.58 QC ZH, (b) 0.58 dealiased Vr, (c) 0.58 AzShear, and (d) 0.58 DivShear depiction of a

tornadic supercell from the Cheyenne, WY (KCYS), radar at 2231 UTC 12 Jun 2017. The low-level mesocyclone is

visible in (c) as a maximum in AzShear (white) and in (d) as coupled extrema of positive and negative DivShear

(deep red and blue, respectively). AzShear and DivShear are thresholded by .20 dBZ 0.58 QC ZH.
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radar location. Second, if the LLSD kernel covers a large

distance radially (as in along-radial gradient applica-

tions), the Cartesian assumption may be violated because

the radar beam physically broadens with range, also de-

creasing the across-beam resolution with distance from

the radar. If the change in azimuthal spacing is sufficiently

large, the gradient would be calculated over a larger

horizontal distance, resulting in artificially low AzShear.

Given recent increases in processing capabilities,

an updated LLSD methodology was developed

from the full derivation below, which is not subject to

the same restrictions. While the updated equations

greatly alleviate these problems (section 3), the

method is not perfect at very large or small distances

from the radar due to sampling limitations, and sim-

ilar but less-severe artifacts may be present in some

situations.

Since LLSD calculates a best-fit plane for areas across

several data points, we use a general, linear, least squares

approximation, which yields the largest rate of change in

any direction. This estimate is derived from the minimiza-

tion of a general, first-order, planar equation as in Eq. (1):

m(b, c)5 a
0
1 a

1
(b)1 a

2
(c) , (1)

where m(b, c) is the linear fit of the coefficient vector

u 5 [a0 a1 a2], modified by coefficients b and c. For

meteorological purposes, the three components of u

include a constant u0, and the radial ur and azimuthal

uu derivatives (shears) of a field [Eq. (2)]:

u5 [u
0
u
r
u
u
] . (2)

This shear vector can be found by minimizing the sum

of squares over n data points. This sum of squares R

FIG. 2. Single-radar 0–2 km AGL layer-maximum AzShear for a tornadic supercell near the Birmingham, AL

(KBMX), radar (denoted by the white cross) at 0009UTC 28 Apr 2011 calculated using (a) legacy LLSD equations

and (b) the updated LLSD algorithm, and single-radar 0–2 km AGL rotation tracks for the 12-h period ending

0300UTC 28Apr 2011 using (c) legacy and (d) updatedLLSDequations. The vortex path ismore easily identifiable

in both the instantaneousAzShear and accumulated tracks using the updated LLSD algorithm in (b) and (d), where

artificially high AzShear is not present.
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may be locally weighted by weight wi, within the LLSD

kernel [Eq. (3)]:

R [�
n

i51

w
i
[Y

i
2m(b, c)]2. (3)

The linear fit is a function of the response variable

Yi. For radar data, Yi is a two-dimensional radar var-

iable uij, which is itself dependent on the offset, in

range Drij and azimuth Duij, from the kernel center

(r 5 0, u 5 0), where Duij (Drij) is a distance in the

azimuthal (radial) direction. If we define the kernel di-

mensions as m 3 n such that index i ( j) runs from i 5 0

to i 5 m (from j 5 0 to j 5 n), then R can be calculated

over each point k5 (i,j) within the kernel. A discussion of

kernel size considerations is presented in section 3. Then,

m [Eq. (1)] andR [Eq. (3)] can be reformulated as in Eqs.

(4) and (5):

m(r, u)5 u(r, u)5 u
0
1 u

r
Dr

k
1 u

u
Du

k
, and (4)

R5 �
m3n

k50

w
k
[u(r

k
,Du

k
)2 (u

0
1 u

r
Dr

k
1 u

u
Du

k
)]2. (5)

As dictated by the least squares technique, R is mini-

mized by setting its derivative to zero in each direction.

This yields the following normal, linear, least squares

derivatives [Eqs. (6a)–(6c)]:

›R

›u
r

5 05 �
m3n

k50

2(2u
k
1u

0
1 u

r
Dr

k
1 u

u
Du

k
)w

k
Dr

k
, (6a)

›R

›u
u

5 05 �
m3n

k50

2(2u
k
1 u

0
1 u

r
Dr

k
1 u

u
Du

k
)w

k
Du

k
, and

(6b)

›R

›u
0

5 05 �
m3n

k50

2(2u
k
1 u

0
1 u

r
Dr

k
1 u

u
u
k
)w

k
. (6c)

Terms in these equations are combined and rearranged

to produce the complete system of least squares deriv-

atives [Eqs. (7a)–(7c)]:

�
m3n

k50

u
k
w

k
Dr

k
5 �

m3n

k50

u
0
w

k
Dr

k
1 �

m3n

k50

u
r
w

k
(Dr

k
)2

1 �
m3n

k50

u
u
w

k
Dr

k
Du

k
, (7a)

�
m3n

k50

u
k
w

k
Du

k
5 �

m3n

k50

u
0
w

k
Du

k
1 �

m3n

k50

u
r
w

k
Dr

k
Du

k

1 �
m3n

k50

u
u
w

k
(Du

k
)2, and (7b)

�
m3n

k50

u
k
w

k
5 �

m3n

k50

u
0
w

k
1 �

m3n

k50

u
r
w

k
Dr

k

1 �
m3n

k50

u
u
w

k
Du

k
. (7c)

Here the derivations deviate from SE04, which as-

sumed perfectly symmetrical data about the kernel

center and neglected all terms containing off-diagonal

coefficients. In this derivation, all terms are preserved.

From Eqs. (7a)–(7c), the individual shear components

in Eq. (4) can be found. Equations (7a)–(7c) can be

expressed in matrix form asMX5 Y, whereM is a matrix

of the position (Drk and Duk) and weighting (wk) coeffi-

cients, and X is a matrix of shear components [Eq. (8)],

where all summations remain from k 5 0 to k 5 m3n:2
664
Sw

k
Dr

k
Du

k
Sw

k
Du2k Sw

k
Du

k

Sw
k
Dr2k Sw

k
Dr

k
Du

k
Sw

k
Dr

k

Sw
k
Dr

k
Sw

k
Du

k
Sw

k

3
775
2
64
u
u

u
r

u
0

3
75

5

2
64
Sw

k
Dr

k
u
k

Sw
k
Du

k
u
k

Sw
k
u
k

3
75 . (8)

The individual derivatives are found by multiplying

the equation by the inverse of the coefficient matrix

[Eq. (9)]:

X5M21Y . (9)

FIG. 3. Summary of the variability of LLSD kernel size with

range for prescribed azimuthal widths of 750 (blue), 1500 (green),

and 2500m (red) for 0.58 superresolution radar data from a WSR-

88D. The actual width of the kernel (m) is shown as the thick line,

while the thin lines show the respective number of gates in the

kernel. The prescribed kernel widths (m) are provided for refer-

ence as horizontal dashed lines. Values for any kernel size converge

at some range; here, all three prescribed kernel sizes result in the

same true kernel size beyond a range of approximately 72 km.
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The inverse of matrix M can be calculated using the

determinant D and adjugate of matrix M [adj(M)]

under the condition D 6¼ 0 [Eq. (10)]. The individual

terms of the adjugate matrix are written as aij:

M21 5
1

D
adj(M)5

2
64
a
11

a
12

a
13

a
21

a
22

a
32

a
31

a
23

a
33

3
75� 1

D

�
. (10)

This allows Eq. (9) to be expressed as Eq. (11), which

can then be solved for both shear components, yield-

ing the final LLSD horizontal shear equations for

the azimuthal [Eq. (12a)] and divergent [Eq. (12b)]

components:

2
64
u
u

u
r

u
0

3
755

2
64
a
11
/D a

12
/D a

13
/D

a
21
/D a

22
/D a

32
/D

a
31
/D a

23
/D a

33
/D

3
75
2
64
Sw

k
Dr

k
u
k

Sw
k
Du

k
u
k

Sw
k
u
k

3
75 , (11)

u
u
5 �

m3n

k50

w
k
Dr

k
u
k

�a
11

D

�
1 �

m3n

k50

w
k
Du

k
u
k

�a
12

D

�

1 �
m3n

k50

w
k
u
k

�a
13

D

�
, and (12a)

u
r
5 �

m3n

k50

w
k
Dr

k
u
k

�a
21

D

�
1 �

m3n

k50

w
k
Du

k
u
k

�a
22

D

�

1 �
m3n

k50

w
k
u
k

�a
23

D

�
.

(12b)

The fully expanded forms of Eqs. (12a) and (12b) and

list of variables for each are found in appendixesA andB,

respectively. Some of the variables in these equations can

be adjusted to suit specific research needs. Several of the

aspects discussed in section 3 are in the context of the

current, operational MRMS configuration, though all are

important considerations for any application of theLLSD

technique.

FIG. 4. Violin plots showing the distribution of maximum AzShear values for a suite of vortices simulated by a

Rankine combined vortex model with theoretical half-z 5 0.02 s21 for LLSD kernels with target azimuthal widths

of (a) 1500, (b) 2500, (c) 5000, and (d) 8000m.
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3. Discussion

Much of the immediate utility of the LLSD equation

adjustments can be seen in two-dimensional gradient

fields of radar data, as in Figs. 1c and 1d. LLSD gradients

are calculated for and assigned to each individual gate

occupied by valid input radar data. They are pieced to-

gether onto the same grid as the input field, resulting in

complete gradient fields that are used to visualize gra-

dients within the context of an entire radar scan. Internal

testing of LLSD-derived products has shown an im-

provement of AzShear and other LLSD gradient cal-

culations using the updated LLSD equations over legacy

equations. For example, much of the artificially high

AzShear within 5–10km of the radar, commonly ob-

served with legacy LLSD equations, is mitigated using

the updated LLSD algorithm, allowing vortices very

near the radar to be more easily distinguished (Fig. 2).

a. Kernel size considerations

All LLSD gradient calculations are highly sensitive to

the size of the LLSD kernel. For example, consider the

AzShear calculation for a hypothetical, symmetrical,

isolated vortex in the center of the kernel. Assuming the

entire vortex fits within the kernel, a large kernel will

include more low-shear gates away from the vortex core

than a smaller one, thereby reducing the overall shear

within the kernel. Conversely, a small kernel is suscep-

tible to missing gates that lie on the outer edge of a

circulation, thus slightly overestimating the maximum

rotation of the vortex as a whole.

The LLSD algorithm uses a constant, predefined ker-

nel size (in meters). It may be manually adjusted to best

suit the type of analysis being performed but is constant

across the volume during processing. For example,

AzShear uses a kernel with a prescribed azimuthal width of

2500mand radial depth of 750m, andDivShear uses kernel

dimensions of 750-m azimuthal width by 1500-m radial

depth. In general, the azimuthal dimension of a kernel used

to calculate across-azimuth gradients should be at least as

large as its radial dimension, and vice versa.

Because of the physical limitations of radar sampling,

azimuthal spacing increases with range. To maintain

an approximately constant physical kernel width, the

number of azimuthal gates within the kernel decreases

with range to compensate for increasing gate widths. Thus,

at small ranges from the radar, the kernel contains a

greater number of radials than a kernel located at a larger

range. At each range, the number of radials required to

construct the kernel is explicitly calculated, meaning that

the kernel size updates as frequently as geometrically

possible to maintain an accurate width. This adaptive

FIG. 5. (top) Average error (calculated as the mean of all differences between calculated

AzShear and theoretical AzShear) and (bottom) averagemedian-centered IQR (the difference

between the 75th and 2fifth percentile values) of all simulated vortices in Fig. 4 with theoretical

half-z 5 0.02 s21 for LLSD kernels with target azimuthal widths of 1500, 2500, 5000m, and

8000m. At range , 100 km, smaller kernels tend to have lower mean errors and lower IQR,

suggesting more consistency and accuracy, and less sensitivity to circulation geometry.
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approach is not perfect and results in 1) inaccuracies at

very large or very small distances from the radar and 2)

discontinuities at certain ranges in between (Fig. 3). Near

the radar, where azimuthal spacing is smallest, the kernel

may wrap sufficiently around the radar to violate the as-

sumption that the kernel columns are practically parallel.

As a result, an upper limit on the number of radials in a

single kernel is imposed. When applying a kernel with an

azimuthal width of 2500m to a 0.58 elevation scan of super-
resolution WSR-88D radar data, this limit is 51 radials.

This threshold was selected through subjective evaluation

of the AzShear product and affects kernels centered at a

range of 6km or less.

The LLSD equations mathematically require a mini-

mum of three radials and three range gates within a

kernel to calculate the 2D gradient. As the kernel ex-

pands laterally with increasing azimuthal spacing, the

number of radials that fit inside the kernel will eventu-

ally reach this minimum. The range at which this occurs

is dependent on radar properties and the prescribed

kernel size. At all ranges beyond this point, the

prescribed kernel width is no longer maintained. For an

AzShear kernel with an azimuthal width of 2500m ap-

plied to a WSR-88D 0.58 elevation scan, this occurs

at ranges greater than approximately 72 km. Beyond

this range, the kernel width exceeds the prescribed

width, meaning that the derivatives are taken over a

larger area, creating a generally lower gradient estimate

(Newman et al. 2013). This is visually manifested as a

‘‘smearing’’ effect across radials at large ranges, which

is a common artifact of radar data. The default DivShear

configuration’s kernel, which is narrower in azimuth, is

subject to the same effect, though the smearing problem

begins closer to the radar than with AzShear.

b. Kernel weighting

By default, LLSD products use a uniform weight for

each gate within the kernel, such that wk 5 1 for all k in

Eqs. (12a) and (12b) (Miller et al. 2013). Another option

is to employ a nonuniform weighting scheme, such as

Cressman weighting (Cressman 1959), so that gates

farther from the center of the kernel receive less weight.

FIG. 6. Single-radar observations during Hurricane Harvey on 26 Aug 2017: (a) 0.58 dealiased Vr and

(b) corresponding 0–2 km AGL layer-maximum AzShear from the Corpus Christi, TX (KCRP), radar near the

center of Hurricane Harvey at 0039 UTC, shortly before landfall; (c) dealiased 0.58 velocity associated with outer

rainband cells from the Houston/Galveston, TX (KHGX), radar at 0244 UTC, (d) corresponding 0–2 km AGL

layer-maximum AzShear, and (e) 2-h accumulated 0–2 km AGL layer-maximum rotation tracks ending at

0252 UTC. In (b), AzShear highlights the strong gradient between major hurricane-force winds in the eyewall and

weak winds in the eye. Low-level circulations, some tornadic, are tracked using AzShear in (d) and (e). The

AzShear fields were calculated using the same default LLSD kernel size.
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In general, a nonuniform weighting scheme will reduce

the magnitudes of the derivatives, except when the

kernel is centered on the underlying radar signature

(e.g., a mesocyclone), where it will receive near-full

weighting. Practically, nonuniform weighting results in

increased isolation of features within the input field,

which in turn increases gradients within the derivative

fields. Internal testing (not shown) of kernel weighting

revealed the output derivative fields more quickly yield

background-level values as input field features are in-

creasingly offset from the kernel center. Specific radar

applications using the LLSD technique should explore the

use of weighting schemes as part of their implementation.

c. Validation

Mathematically, when applied to a Vr field, the slope

of the LLSDbest-fit plane across azimuth u [Eq. (12a)] is

represented as a simple rise over run dVr/du, which

corresponds to one term of z, assuming local symmetry.

Thus, AzShear can be considered an approximation for

one-half of the total z. To evaluate this relationship and

quantify the effects of kernel size on AzShear, calcula-

tions of AzShear were compared to theoretical half-z,

defined as DVr/2r for a variety of simulated circulations.

The Vr signatures of simulated vortices of varying

size, intensity, and range from a hypothetical WSR-88D

superresolution radar (0.58 azimuthal resolution and

1.028 effective beamwidth) were generated using a

Rankine combined vortex model (Wood and Brown

1997). Circulations were varied in radius (1000–8000m in

increments of 250m), distance to radar (10–200km in in-

crements of 5km), and circulation strength (delta-V 5
Vmax2Vmin, from 10 to 50ms21 in increments of 5ms21).

A total of 10179 vortices were simulated. Following the

approach of SE04 andMiller et al. (2013), 2ms21 uniform

noise was superimposed on the Vr field of each to better

simulate the imperfections present in real radar fields.

Each simulated vortex was passed through the LLSD

algorithm to calculate AzShear using four different

kernels, each with a constant radial depth of 750m

(since a radar’s radial resolution should not change) but

with different azimuthal widths: 1500, 2500, 5000, and

8000m. Maximum AzShear calculations for all circula-

tions with theoretical half-z of 0.02 s21, a common value

for strongly rotating storms (Burgess et al. 1975), are

summarized in Fig. 4. In general for the circulations

within 90km from the radar, a kernel 2500m wide

by 750m deep produced the most accurate AzShear

calculation, with the average maximum AzShear

values varying from the theoretical shear by 5% or

less (Fig. 5a). Beyond 90km, this kernel underestimated

the values. A smaller kernel (1500-m azimuthal width)

FIG. 7. Single-radar, 0.58 (a) dealiasedVr, (b) QCZH, and (c) DivShear, and (d) 10.08DivShear showing the low-level

divergence andmidlevel convergence associatedwith a downburst (denoted by the dashed circle) sampled by the Tampa

Bay, FL (KTBW), radar at 2219UTC24Aug 2011. TheDivShear in (c) and (d) are thresholded by.10 dBZ 0.58QCZH.

APRIL 2019 MAHAL IK ET AL . 423

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/2/415/4866756/w

af-d-18-0095_1.pdf by N
O

AA C
entral Library user on 02 July 2020



tended to overestimate the rotation intensity of the

circulations within 80km of the radar by 10%–15%

while larger kernels resulted in underestimations of 30%

(5000-m azimuthal width) to 60% (8000-m azimuthal

width) over the same radar distances. These results are

caused by small kernels failing to include information

from Vr measurements outside of the vortex core

and large kernels effectively smoothing the rotation

across a larger area. Large kernels are also more sen-

sitive to the physical size of the circulation and produce a

wider range of AzShear calculations within 100km of

the radar, as illustrated by the large-area violin plots in

Figs. 4c and 4d and large median-centered interquartile

ranges (IQR; Fig. 5b).

Across a diverse set of simulated vortices, the kernel

with an azimuthal width of 2500m and radial depth of

750m tended to best match theoretical z, particularly for

those with characteristics common to strong mesocy-

clones. This kernel size is most appropriate for real-time

AzShear calculations given the authors’ experience

implementing it for severe weather analysis. However,

analyses of phenomena of varying scales may find other

kernel sizes more appropriate, such as a storm-top di-

vergence signature. In general, larger kernels effectively

FIG. 8. Single-radar (a) 12.58 dealiased Vr and (b) corresponding DivShear showing a storm-top divergence

signature associated with convection from the Oklahoma City, OK (KTLX), radar at 2313 UTC 31 May 2013. The

divergence located at the top of the updraft is indicated by strongly positive DivShear and is flanked by a region of

negative DivShear in (b). A kernel with an azimuthal width of 750m and a radial depth of 8750m was used.

FIG. 9. Single radar, 0.58 (a) dealiasedVr and corresponding (b)AzShear and (c)DivShear associated with aQLCS from the Shreveport,

LA (KSHV), radar at 0454UTC 14Apr 2018. Strong convergence (blue) occurs along the line in (c) but is not highlighted as suchwhen it is

aligned approximately parallel to the KSHV radar beam (approximated by the dashed line). Note several locations of embedded rotation

in the AzShear field in (b), denoted by the dashed circles.
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filter the data more, retaining only the strongest or

large-scale gradients. Large-scale derivatives are not

removed by smaller kernels, but they may be masked

by small-scale gradients that are not resolvable by a

larger kernel.

The results shown in Figs. 4–5 are averaged over a

representative subset of simulations. A comprehen-

sive analysis of AzShear accuracy relative to small

changes in vortex size, strength, and range from radar

is beyond the scope of this paper and will be left for

future study.

4. Applications

a. Velocity

AzShear and DivShear are the LLSD gradients of Vr

fields (Fig. 1) and represent an approximation for half-z

and half-divergence, respectively. Positive (negative)

AzShear values represent cyclonic (anticyclonic) ro-

tation, while positive (negative) DivShear represents

divergence (convergence).

Using a different method of calculating AzShear,

Burgess et al. (1975) first developed ranges of typical

FIG. 10. Single-radar (a) ZH and (b) corresponding LLSD azimuthal ZH gradient for a tornadic supercell from

KTLX at 2235 UTC 24 May 2011. (left) A vertical cross-section taken along the line depicted in the (right)

corresponding 0.58 PPI. This multidimensional application of ZH gradients and the additional context provided by

the sign of the gradient can be used to interrogate storm structure.
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AzShear values that still largely hold true: AzShear

often surpasses 60.01 s21 in strong circulations, and

the most intense circulations can exceed 60.05 s21.

Since values tend to be maximized in tornadic supercells

(Burgess et al. 1975), AzShear is especially useful for

rotation identification and tracking (Manross et al. 2008;

Karstens et al. 2016), which, in turn, is valuable for TDS

identification (Ryzhkov et al. 2005; Snyder and Ryzhkov

2015) and model verification (Skinner et al. 2016).

The LLSD technique has the ability to detect rotation

at different spatial scales, with or without changing the

kernel size. Data surrounding Vr extrema of any kind will

be associated with nonzero AzShear since the extrema

are, by definition, greater than the surroundingwinds, thus

producing a gradient between the two. For example, Fig. 6

shows enhanced AzShear near the strongest winds within

the eyewall of a tropical cyclone (Fig. 6b), while also

highlighting rotating small-scale features such as tornadic

circulations embedded in outer rainbands (Figs. 6d,e),

which are often difficult to detect using traditional radar-

based algorithms (Spratt et al. 1997).

DivShear was originally used in the development of

an experimental damaging downburst detection algo-

rithm (Smith et al. 2004) due to its ability to identify

downburst signatures of converging flow aloft and di-

verging flow near the surface (Fig. 7). It can be also used

to identify and investigate supercell structure (Fig. 1;

Heinselman et al. 2008) and mesoscale features such as

sea breezes and outflow boundaries. Larger-scale divergent

features, such as storm-top divergence (Fig. 8), can be ex-

amined using LLSD kernels with increased radial depth.

Unlike rotation signatures, which are spatially fairly

compact and nearly circular, elongated, quasi-linear

features like convergence boundaries are a function

of radar viewing angle. Along-azimuth gradients are

minimized when linear features are oriented parallel

to the radar beam, meaning that DivShear values are

inherently a function of the feature’s orientation to the

radar. For example, the quasi-linear convective system

(QLCS) depicted in Fig. 9, which produced severe winds

and occasional tornadoes, is a line of convergent Vr

(Fig. 9a) and an elongated region of AzShear (Fig. 9b).

However, the QLCS curves such that its southern half is

aligned approximately parallel to the beam, resulting

in very little along-azimuth gradient, and locally weak

DivShear (Fig. 9c). Given these considerations, some

form of the total derivative, or another combination of

both shear components, may be useful when examining

features with high aspect ratio (e.g., noncircular fea-

tures such as gust fronts). Interrogating single-radar

data from another radar with a different viewing angle

of the same feature, or merging data from more than

one radar, may also help alleviate this issue.

Operationally, AzShear is produced within the

MRMS system at the National Centers for Environ-

mental Prediction. It is first calculated as a single-radar,

layer-maximum product and then is merged onto the

MRMS continental United States (CONUS) grid. For

example, layer-maximum AzShear is the maximum

AzShear within a vertical layer. For the operational

MRMS system, two vertical layers are used: low-level

[0–2 km above ground level (AGL)] and midlevel

FIG. 11. Single-radar, 0.58 (a) QCZH, (c) spectrumwidth, (e) rhv,

and (g) ZDR, and (b),(d),(f),(h) corresponding LLSD gradients of

each for a tornadic supercell, from KTLX at 2012 UTC 20 May

2013. Polarimetric fields were passed through a preprocessor and

thresholded by .20 dBZ QC ZH. The gradients in (d) and (f) are

largest in the vicinity of the tornadic debris signature (denoted by

the dashed ellipse) associated with a significant tornado at the time

of this scan. The gradient in (h) (denoted by the arched line)

highlights a ZDR arc.

426 WEATHER AND FORECAST ING VOLUME 34

D
ow

nloaded from
 http://journals.am

etsoc.org/w
af/article-pdf/34/2/415/4866756/w

af-d-18-0095_1.pdf by N
O

AA C
entral Library user on 02 July 2020



(3–6 km AGL; Smith et al. 2016). Layered AzShear is

accumulated over time to produce low- and midlevel

rotation tracks (as in Fig. 2), the standard MRMS prod-

ucts used to visualize the paths and intensity trends of

mesocyclones (Miller et al. 2013).

b. Reflectivity

For scalar fields, the individual azimuthal and radial

LLSD gradients of ZH and other non-Vr radar fields

often provide less meaningful information than Vr gra-

dients but may help reveal features when examined in

unison. One method to calculate the total, absolute

magnitude of an LLSD gradient is found by calculating

the vector norm of the local gradient:

u5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
u 1 u2

r

q
. (13)

Total ZH gradients can help identify substorm-scale

features such as supercell bounded weak echo regions

(BWER) and the vertical structure of precipitation

cores (Fig. 10), providing three-dimensional details of

ZH distributions that may help diagnose characteris-

tics of precipitation type, heavy rainfall, hail, or other

nonmeteorological scatterers.

The total, horizontal gradient [Eq. (13)] of ZH (dBZm21)

effectively produces a ZH ‘‘stencil,’’ outlining indi-

vidual storms or ZH clusters (Figs. 11a,b) by high-

lighting sharp changes in ZH, which themselves can

be caused by a wide range of meteorological phenom-

ena. For example, a supercell’s shape and the debris ball

ZH signature (a ZH maximum resulting from lofted de-

bris; Bunkers and Baxter 2011) are seen in the ZH gra-

dients in Fig. 11b. LLSD ZH gradient calculations are

sensitive to ground clutter contamination, however, and

any nonmeteorological ZH not removed by quality-

control algorithms may interfere with the meteorologi-

cal signal (Lakshmanan et al. 2007a), as evidenced by

isolated, spuriously high LLSD gradient values in Fig. 11

and other nonvelocity gradient figures.

One potential application of LLSD-derived ZH gra-

dient information could include its implementation

within hydrometeor classification or discrimination

algorithms. For instance, large hail sizes (diameters

exceeding 25mm) have been observed in low ZH regions

(below 40 dBZ; e.g., Snyder et al. 2014, 2017), while op-

erational algorithms typically use minimum ZH values at

or above 40dBZ for hail classification and sizing (Witt

et al. 1998; Park et al. 2009; Ortega et al. 2016). Use of ZH

gradients instead of or along with simple ZH thresholds

may help improve the skill of these algorithms. The first

potential avenue for improvementwould be to incorporate

the gradient fields into the validation of the algorithms. For

instance, Ortega et al. (2016) used only peak reflectivity

values at the report point, or within a surrounding neigh-

borhood, to determine the best match for validation.

Adding the gradient field might help with more precise

matching of reports to algorithmoutputs, or at least further

stratify results to better explain algorithm skill. The second

way would be to directly incorporate gradient fields into

the algorithms should they show discrimination power.

c. Spectrum width and polarimetric moments

Gradients of rhv (m21) and spectrum width (s21) can

help indicate the presence of a TDS by highlighting

tight gradients surrounding a region of extreme values

(Figs. 11c–f; Zrnić and Doviak 1975; Ryzhkov et al. 2005).

In some cases, gradients related to important storm

properties can visually appear obvious, and thus be useful

FIG. 12. Single-radar (a) 12.58ZDR and corresponding (b) azimuthal and (c) radial LLSD gradients of aZDR columnwithin a storm from the

Sioux Falls, SD (KFSD), radar at 0352 UTC 18 Jun 2014. Both LLSD gradient components surround the core of a ZDR maximum. Tracking

these LLSD gradient peaks over several elevation scans in the same volume can be used to aid in the identification of a ZDR column.
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during operational applications. At this time, there is no

obvious added benefit to using LLSD gradient fields di-

rectly in an operational setting, particularly in short-fuse

situations, when compared to simply using the human eye.

However, these fields reveal patterns in gradients that

may be useful in future application development. The

examples of polarimetric variable gradients shown here

were generated from data processed through the WSR-

88D preprocessor (Istok et al. 2009), which smooths the

polarimetric variables along the radial and applies cor-

rections to ZDR for attenuation and system calibrations.

In well-organized supercells, ZDR gradients (dBm21)

can highlightZDR arcs (Figs. 11g,h; Kumjian andRyzhkov

2008) and ZDR columns (Fig. 12; Kumjian and Ryzhkov

2008), which are related to themagnitude of storm-relative

helicity and may diagnose relative updraft strength and

hail production, respectively (Kumjian and Ryzhkov

2009). Identifying and monitoring the trends of these

characteristics can help in tracking the location and in-

tensity of individual storms and their hazards.

Gradients of ZDR and rhv also show the melting

(Ryzhkov et al. 1998) and/or refreezing layers (Kumjian et al.

2013) within both severe convective storms and synoptic-

scale winter precipitation (Ryzhkov and Zrnić 1998) and

may help diagnose frozen and mixed-phase cloud physical

processes. Values of these products are generally fairly

constant across areas of pure snow, while mixed pre-

cipitation fields are more heterogeneous due to var-

iations in hydrometeor size and shape. Total LLSD

gradients of ZDR and rhv detect mixed-phase layers

by their heightened spatial variability: many finescale

gradients occur within mixed-phase regions, while

relatively homogenous precipitation regions contain

very few (Fig. 13). Because of the relatively noisy

nature of polarimetric data, larger LLSD kernels ef-

fectively filter out these signals over a large area.

FIG. 13. Single-radar, 0.58, preprocessed (a)ZDR and (c) rhv and (b),(d) corresponding total (i.e., the norm of both

components) LLSD gradients of each observed during a winter storm with multiple precipitation types across

North Carolina, from the Raleigh/Durham, NC (KRAX), radar at 0310 UTC 7 Jan 2017. Poor rhv data quality

causes the noisy data near the radar in (c) and (d). In both instances, changes in the relative homogeneity of the

gradient fields help distinguish between precipitation types.
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Although more analysis is needed to quantify the re-

lationships between non-Vr LLSD gradients and the

physical processes described above, it is possible that these

gradient calculations, particularly when examined in con-

junction with other meteorological data, may aid in on-

going research efforts such as visualizing internal storm

processes and isolating regions of particular hydrometeor

regimes. SuchLLSDgradientsmay prove especially useful

for automated feature detection methods, for example, as

input predictors in machine learning applications such

as random forest (Breiman 2001) or deep learning

(Schmidhuber 2015) classification or identification tech-

niques. Implementation and evaluation of these potential

applications will be left to future work. LLSD Vr gradi-

ents have already been implemented in the development

of newmesocyclone and tornado detection algorithms for

the WSR-88D network (Ortega et al. 2018).

d. Radar types

TheLLSDalgorithmsusedatNSSLhavebeenoptimized

to process data from the Weather Surveillance Radar-1988

Doppler (WSR-88D) S-band radars. These radars have

changed resolutions over time from legacy (1.388 effective
beamwidth; Brown et al. 2002, 2005) to super-resolution

(1.028 effective beamwidth; Torres and Curtis 2007) scan-

ning strategies. The algorithm has been successfully tested

on both resolutions, though the examples provided in this

section apply specifically to super-resolution.

The LLSD equations do not change for data from

other, non-WSR-88D systems, such as mobile, C-band,

and X-band radars, regardless of spatial or temporal

resolution. The algorithm described here has undergone

testing on data from a variety of platforms, including the

Rapid-scan X-band Polarimetric mobile radar (RaXPol;

Pazmany et al. 2013;Wienhoff et al. 2017) and theNOAA

X-band dual-polarized (NOXP; Burgess et al. 2010) mo-

bile radar (Fig. 14), and calculated gradients satisfactorily

for each. In addition, LLSD kernel sizes can be manually

modified for different radar characteristics, if desired.

e. Data quality

Although the LLSD approach is designed to minimize

the effects of poor data quality, it is still subject to the

quality of its input field. OperationalAzShear blocks out

measurements associated with range folding or missing

data but will otherwise complete LLSD calculations on the

input Vr field. These calculations may be negatively af-

fected by a number of data quality issues, including side-

lobe contamination (Piltz and Burgess 2009), dealiasing

failures (Figs. 15a,b; Witt et al. 2009), wind farms or other

ground clutter (Figs. 15c,d; Isom et al. 2007), and others.

For example, in Fig. 15a, artificial AzShear spikes exist

along the edges of dealiasing failures, where folds between

Nyquist velocity intervals occur. However, since all Vr

values elsewhere within the folded region are uniformly

affected by the failure, Vr gradients are correct.

5. Summary and future work

An updated derivation and new applications of the im-

proved LLSD approach to calculating gradients in radar

data fields have been presented, alongwith a comprehensive

FIG. 14. Single-radar, 0.58 (a) ZH, (b) dealiased Vr, (c) DivShear, and (d) AzShear from a NOXP sweep of a

supercell in westernNebraska at 1659UTC 13 Jun 2017.MissingDivShear andAzShear in (c) and (d) are caused by

missing or range folded data being present in within the LLSD kernel.
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discussion of considerations for technique application. The

methodology described here can be applied to nearly any

radar data field for use in interrogating a wide variety of

meteorological phenomena, whether in a manual, user-

driven warning-decision sense or perhaps an automated,

computer-driven, object-based approach.While up to this

point most applications have focused on detecting rota-

tion (AzShear) or aviation hazards (DivShear), LLSD

output also may be used as a new approach to depicting

storm structure, severe weather signatures, and micro-

physical processes. However, the work shown here is

intended to provide anoverview of potential applications,

and these analyses represent the minimum that should be

done when completing a quantitative analysis of a LLSD

product. Use of any LLSD output should be thoroughly

tested and evaluated when used in any application.

As with all radar-derived analysis techniques, LLSD

products are subject to standard radar sampling limita-

tions. Future work should include thorough documenta-

tion of these limitations for specific LLSD applications

and an investigation into overcoming them. This may

include revisiting previous methods of alleviating range

effects (Newman et al. 2013), additional exploration using

different kernel sizes for various, feature-specific identi-

fications, and a more expansive investigation of potential

kernel weighting techniques.

All LLSD examples in this paper were produced using

single-Doppler radar data, but similar multiradar prod-

ucts generated within the MRMS framework should

prove useful as well. Thus, the effects of multiradar

mergers of LLSD fields, including AzShear, should also

be investigated. In addition, further scrutiny of many of

FIG. 15. Examples of poor data quality affecting LLSD gradient calculations. (top) Single-radar (a) 3.18 dealiased
Vr and (b) corresponding AzShear from the Kansas City/Pleasant Hill, MO (KEAX), radar at 0221 UTC 20 May

2013. Nonphysical, extreme AzShear occurs along straight lines surrounding a dealiasing failure. (bottom) Single-

radar (c) 0.98 ZH and (d) corresponding LLSD azimuthal ZH gradient from the Dodge City, KS (KDDC), radar at

2147 UTC 24 May 2016. The ZH returns are caused by wind farms (denoted by the dashed circles).
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the signatures presented here is necessary, and future

work should be performed to test their prevalence.
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APPENDIX A

Complete LLSD Azimuthal Gradient Equation

Complete form of the LLSD azimuthal shear

(AzShear) equation:
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where k is the index for each kernel grid point, m and n

are the number of grid points in the LLSD kernel in

x (m) and y (n), Drk is the radial distance from the center

of the LLSD kernel, Duk is the azimuthal distance from

the center of the LLSD kernel, uk is the radar variable

measurement at kernel grid point k, and wk is the local

weight at kernel grid point k.

APPENDIX B

Complete LLSD Radial Gradient Equation

Complete form of the LLSD radial shear (DivShear)

equation:
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where k is the index for each kernel grid point, m and n

are the number of grid points in the LLSD kernel in

x (m) and y (n), Drk is the radial distance from the center

of the LLSD kernel, Duk is the azimuthal distance from
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the center of the LLSD kernel, uk is the radar variable

measurement at kernel grid point k, and wk is the local

weight at kernel grid point k.
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